




The	
  Higgs	
  discovery	
  is	
  a	
  milestone	
  in	
  
particle	
  physics!	
  	
  

Now	
  we	
  have	
  a	
  light	
  in	
  the	
  dark	
  …	
  





bare	
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a	
  parameter	
  
In	
  the	
  Lagrangian	
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  ~	
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  GeV	
  and	
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“Hierarchy/naturalness	
  problem”	
  drives	
  40	
  years	
  speculative/creative	
  theory	
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In	
  MSSM,	
  to	
  get	
  the	
  Higgs	
  mass	
  
to	
  be	
  125	
  GeV,	
  a	
  large	
  quantum	
  correction	
  	
  
must	
  be	
  introduced	
  with	
  multi-­‐TeV	
  SUSY	
  
breaking	
  parameters;	
  

|Xt| � 1000 GeV, MS � 500 GeV.
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ATLAS Preliminary
Channel µ ζ(G,V,T)

i (%) Refs.

bb̄ 0.2+0.7
−0.6 (0, 100, 0) [72]

ττ̄ (boosted) 1.2+0.8
−0.6 (66, 34, 0)

ττ̄ (VBF) 1.6+0.6
−0.5 (10, 90, 0) [73]

W W (0/1j ) 0.82+0.33
−0.32 (98, 2, 0)

W W (2j ) 1.4+0.7
−0.6 (19, 81, 0) [74]

ZZ (other) 1.45+0.43
−0.36 (90.4, 9.6, 0)

ZZ (VBF + VH) 1.2+1.6
−0.9 (37.0, 63.0, 0) [74]

γγ (low pT ) 1.6+0.5
−0.4 (91.1, 8.6, 0.3)

γγ (high pT ) 1.7+0.7
−0.6 (78.6, 19.9, 1.4)

γγ (2j ) 1.9+0.8
−0.6 (32.3, 67.7, 0)

γγ (VH) 1.3+1.2
−1.1 (22.4, 68.1, 9.5) [74]

Table 2: ATLAS data used in fits. Official values for efficiencies are used when quoted, otherwise approximations are made
according to a channel’s primary topologies.

Channel µ ζ(G,V,T)
i (%) Refs.

bb̄ 1.59+0.69
−0.72 (0, 100, 0) [75]

ττ̄ 1.68+2.28
−1.68 (50, 50, 0) [75]

W W 0.94+0.85
−0.83 (77.5, 22.5, 0) [75]

γγ 5.97+3.39
−3.12 (77.5, 22.5, 0) [75]

Table 3: Combined CDF and D0 data used in fits. Efficiencies for ττ channel are approximated from [76].
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Figure 10: Result of a one-dimensional fit using the HiggsSignals code, to be compared with Figures 1 and 2. The results are
similar, but the 2σ limits extracted with HiggsSignals are somewhat weaker (reaching slightly below 400 GeV along the diagonal,
rather than slightly above). The difference is partly due to our use of more recent ATLAS and CMS updates, and partly due to a
different treatment of uncertainties.
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In Figure 9 we show the regions in which the gluino contribution from fine-tuning is large, if the At value
needed to fit the data arises from the gluino mass through RGs. As in Section 3, we take At =

��X min
t

��+µ/ tanβ with
the SUSY breaking mediation scale Λ = 30 TeV, µ = −200 GeV and tanβ = 10. In this sort of scenario where At

arises dominantly from RGEs, we see that the data favor both stops being heavier than around 300 GeV.

B Higgs Data

In this appendix, we list all the channels of Higgs data we used in the fit in Table 1, 2, 3.

Channel µ ζ(G,V,T)
i

(%) Refs.

bb̄ (VBF) 1.0±0.5 (0, 100, 0) [66]
ττ̄ (0j ) 0.34±1.09 (98.1, 1.9, 0)
ττ̄ (1j ) 1.07±0.46 (77.3, 22.7, 0) [67]
ττ̄ (2j ) 0.94±0.41 (19.0, 81.0, 0)
ττ̄ (V H ) −0.33±1.02 (0, 100, 0)
W W (0/1j ) 0.74+0.22

−0.2 (95.7, 4.3, 0)
W W (2j ; VBF) 0.6+0.57

−0.46 (22.3, 77.7, 0) [68]
W W (3�3ν ) 0.56+1.27

−0.95 (0, 100, 0)
ZZ (0/1j ) 0.83+0.31

−0.25 (92.8, 7.2, 0)
ZZ (2j ) 1.45+0.89

−0.62 (54.8, 42.5, 2.7) [69]
γγ (untagged 0; 8 TeV) 2.12+0.92

−0.78 (72.9, 24.6, 2.6)
γγ (untagged 3; 8 TeV) −0.81+0.85

−0.42 (92.5, 7.2, 0.2)
γγ (dijet; 8 TeV) 4.13+2.33

−1.76 (26.8, 73.1, 0.0)
γγ (dijet loose; 8 TeV) 0.75+1.06

−0.99 (46.8, 52.8, 0.5)
γγ (dijet tight; 8 TeV) 0.22+0.71

−0.57 (20.7, 79.2, 0.1)
γγ (MET; 8 TeV) 1.84+2.65

−2.26 (0.0, 79.3, 20.8)

Table 1: CMS data used in fits. Official values for efficiencies are used when quoted, otherwise approximations are made
according to a channel’s primary topologies. Unless specificed, the signal strengths are derived from a combination of 7 TeV
and 8 TeV data. ζ(G,V,T)

i
stand for weights of gluon fusion channel (G ), vector boson fusion plus associated production with W,Z

channels (V ) and associated production with tops channel (T ).

Channel µ ζ(G,V,T)
i

(%) Refs.

bb̄ 0.2+0.7
−0.6 (0, 100, 0) [72]

ττ̄ (boosted) 1.2+0.8
−0.6 (66, 34, 0)

ττ̄ (VBF) 1.6+0.6
−0.5 (10, 90, 0) [73]

W W (0/1j ) 0.82+0.33
−0.32 (98, 2, 0)

W W (2j ) 1.4+0.7
−0.6 (19, 81, 0) [74]

ZZ (other) 1.45+0.43
−0.36 (90.4, 9.6, 0)

ZZ (VBF + VH) 1.2+1.6
−0.9 (37.0, 63.0, 0) [74]

γγ (low pT ) 1.6+0.5
−0.4 (91.1, 8.6, 0.3)

γγ (high pT ) 1.7+0.7
−0.6 (78.6, 19.9, 1.4)

γγ (2j ) 1.9+0.8
−0.6 (32.3, 67.7, 0)

γγ (VH) 1.3+1.2
−1.1 (22.4, 68.1, 9.5) [74]

Table 2: ATLAS data used in fits. Official values for efficiencies are used when quoted, otherwise approximations are made
according to a channel’s primary topologies.

C HiggsSignals Comparison

We have used the HiggsSignals 1.1.0 software [77–80] as a check that our own fits produce reasonable results. At
this time, HiggsSignals does not include some of the latest experimental updates that appeared after October 2013
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with c ’s denoting couplings and i = t , V,G ,γ,b ,τ standing for top, massive vector gauge bosons, gluon, photon,
bottom and tau respectively.1

The stop mass-squared matrix, in the gauge eigenstate basis (t̃ L , t̃R ), is given by

m 2
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�
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,

where m 2
Q3

, m 2
U3

are the soft mass squared of left- and right- handed stops respectively and the stop mixing term

Xt = At−µ/ tanβ . For simplicity, we will neglect possible phases in the stop mass matrix. ∆ũ L =
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1
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2
3 sin2θW

�
cos(2β )m 2

Z

and∆ũ R =
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2
3 sin2θW

�
cos(2β )m 2

Z originate from the D-term quartic interactions and are�m 2
t .

It is easy to see that the off-diagonal stop mixing terms always split the two mass eigenstates. More specifically,
the splitting between two physical masses squared can be expressed in terms of the mass parameters as

���m 2
t̃1
−m 2

t̃2

���=
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(m 2

Q3
+∆ũ L −m 2

U3
−∆ũ R )2+4m 2

t X 2
t , (2)

where the first term in the square root comes from the difference in the diagonal mass terms while the second one
comes from the off-diagonal mass term. Thus for fixed physical stop masses, the maximally allowed Xt is given by

��X max
t

��=

���m 2
t̃1
−m 2

t̃2

���
2mt

, (3)

which is only achieved when the diagonal mass terms are equal. In particular, two mass degenerate stops corre-
spond to Xt = 0.

As is well known, stop loops could modify the Higgs coupling to gluons, of which the leading order contribution
could be computed easily via the low energy Higgs theorem [?, ?]
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where we neglect D-terms. This expression is valid for mt̃1,2 ∼>mh/2, which we will assume. Exotic scenarios where
lighter stops could have evaded detection would also predict a large Higgs decay rate to stops, so it is safe to dismiss
the possibility. One can see that without mixing (Xt ≈ 0) light stops could give a considerable positive contribution
to r t̃

G . If it exceeds the upper bound allowed by the Higgs coupling measurements, there has to be a cancelation
between the first two positive terms and the last negative term from stop mixing. The low-energy theorem asserts
that the loop correction from a particle with mass M (v ) is∝ ∂ log M 2(v )/∂ log v ; the mixing contributes negatively
because a larger Higgs vev would mean a larger off-diagonal term and would decrease the lightest stop mass. Thus
for light stops to be consistent with the Higgs coupling data, Xt has to be larger than
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where
�

r t̃
G

�fit;max
is the upper end of the experimental allowed range from a fit. We will describe the procedure

of the fit in the next section. This formula is only valid when the quantity in the square root in Eq. ?? is positive;
otherwise, there is no constraint.

For given (mt̃1 , mt̃2 ), if
��X max

t

�� in Eq. ?? allowed by the physical masses is smaller than
��X min

t

�� in Eq. ?? allowed
by the Higgs coupling, this point in the parameter space is inconsistent with the Higgs coupling measurements.
This constraint will be strongest along the mass degenerate line, mt̃1 =mt̃2 , where the physical masses only allow
zero mixings. Although equation ?? is not valid for stop masses less than about half the Higgs mass (at which point
the low energy theorem must be modified by including the appropriate loop function), considering its mt̃1 → 0

1We take further rW = rZ = rV although this may have exceptions [?].
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As is well known, stop loops could modify the Higgs coupling to gluons, of which the leading order contribution
could be computed easily via the low energy Higgs theorem [33, 34]

r t̃
G ≡

c t̃
h g g

c SM
h g g

≈ 1
4

�
m 2

t

m 2
t̃1

+
m 2

t

m 2
t̃2

− m 2
t X 2

t

m 2
t̃1

m 2
t̃2

�
, stop contribution, (4)

where we neglect D-terms. This expression is valid for mt̃1,2 ∼>mh/2, which we will assume. Exotic scenarios where
lighter stops could have evaded detection would also predict a large Higgs decay rate to stops, so it is safe to dismiss
the possibility. One can see that without mixing (Xt ≈ 0) light stops could give a considerable positive contribution
to r t̃

G . If it exceeds the upper bound allowed by the Higgs coupling measurements, there has to be a cancelation
between the first two positive terms and the last negative term from stop mixing. The low-energy theorem asserts
that the loop correction from a particle with mass M (v ) is∝ ∂ log M 2(v )/∂ log v ; the mixing contributes negatively
because a larger Higgs vev would mean a larger off-diagonal term and would decrease the lightest stop mass. Thus
for light stops to be consistent with the Higgs coupling data, Xt has to be larger than

��X min
t

��=

�
m 2

t (m
2
t̃1
+m 2

t̃2
)−4
�

r t̃
G

�fit;max
m 2

t̃1
m 2

t̃2

mt
, (5)

where
�

r t̃
G

�fit;max
is the upper end of the experimental allowed range from a fit. We will describe the procedure

of the fit in the next section. This formula is only valid when the quantity in the square root in Eq. 5 is positive;
otherwise, there is no constraint.

For given (mt̃1 , mt̃2 ), if
��X max

t

�� in Eq. 3 allowed by the physical masses is smaller than
��X min

t

�� in Eq. 5 allowed
by the Higgs coupling, this point in the parameter space is inconsistent with the Higgs coupling measurements.
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zero mixings. Although equation 4 is not valid for stop masses less than about half the Higgs mass (at which point
the low energy theorem must be modified by including the appropriate loop function), considering its mt̃1 → 0

1We take further rW = rZ = rV although this may have exceptions [32].
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It is easy to see that the off-diagonal stop mixing terms always split the two mass eigenstates. More specifically,
the splitting between two physical masses squared can be expressed in terms of the mass parameters as
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where the first term in the square root comes from the difference in the diagonal mass terms while the second one
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which is only achieved when the diagonal mass terms are equal. In particular, two mass degenerate stops corre-
spond to Xt = 0.

As is well known, stop loops could modify the Higgs coupling to gluons, of which the leading order contribution
could be computed easily via the low energy Higgs theorem [33, 34]
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where we neglect D-terms. This expression is valid for mt̃1,2 ∼>mh/2, which we will assume. Exotic scenarios where
lighter stops could have evaded detection would also predict a large Higgs decay rate to stops, so it is safe to dismiss
the possibility. One can see that without mixing (Xt ≈ 0) light stops could give a considerable positive contribution
to r t̃

G . If it exceeds the upper bound allowed by the Higgs coupling measurements, there has to be a cancelation
between the first two positive terms and the last negative term from stop mixing. The low-energy theorem asserts
that the loop correction from a particle with mass M (v ) is∝ ∂ log M 2(v )/∂ log v ; the mixing contributes negatively
because a larger Higgs vev would mean a larger off-diagonal term and would decrease the lightest stop mass. Thus
for light stops to be consistent with the Higgs coupling data, Xt has to be larger than
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where
�

r t̃
G

�fit;max
is the upper end of the experimental allowed range from a fit. We will describe the procedure

of the fit in the next section. This formula is only valid when the quantity in the square root in Eq. 5 is positive;
otherwise, there is no constraint.

For given (mt̃1 , mt̃2 ), if
��X max

t

�� in Eq. 3 allowed by the physical masses is smaller than
��X min

t

�� in Eq. 5 allowed
by the Higgs coupling, this point in the parameter space is inconsistent with the Higgs coupling measurements.
This constraint will be strongest along the mass degenerate line, mt̃1 =mt̃2 , where the physical masses only allow
zero mixings. Although equation 4 is not valid for stop masses less than about half the Higgs mass (at which point
the low energy theorem must be modified by including the appropriate loop function), considering its mt̃1 → 0

1We take further rW = rZ = rV although this may have exceptions [32].
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≈−1.84, the amplitudes of h→ γγ in the SM, valid for mh = 125 GeV.
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Figure 1: Illustration of the principle behind our exclusion plots. The blue dashed contours are the largest allowed mixing
parameters for given stop mass eigenvalues,

��X max
t

�� (as in eq. 3). The orange solid contours are the minimum mixing
��X min

t

��
required to fit the data at 2σ, as in eq. 5, under the hypothesis that only stop loops modify Higgs couplings. In the case of
models with an R-symmetry where Xt = 0, the entire shaded gray region is excluded at 2σ by the data. In more general models,
we display the exclusion below.

As discussed in Sec. 2, for a given point in the (mt̃1 , mt̃2 ) plane, if
��X max

t

�� in Eq. 3 allowed by the physical masses
is smaller than

��X min
t

�� in Eq. 5 allowed by the Higgs coupling, this point is excluded by the Higgs coupling mea-

surements. We illustrate this principle in Fig. 1, which shows contours of
���X min,max

t

���. The shaded region in Fig. 1

is ruled out in models where Xt ≈ 0, e.g. R-symmetric theories. The excluded region allowing for nonzero Xt is
demonstrated in Fig. 2.
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Here Λ is a scale characterizing mediation of SUSY breaking, while mEW is the low scale at which running stops.
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�

1
2 −

2
3 sin2θW

�
cos(2β )m 2

Z

and∆ũ R =
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Figure 2: Assuming no other contributions to Higgs digluon coupling rG other than stops’, region of natural stop that has been
ruled out by Higgs coupling measurements. The three shaded purple regions, from darkest to lightest, are excluded at 3σ
(99.73%) level; 2σ (95.45%) level; and 1σ (68.27%) level. The dashed purple line is the boundary of the region excluded at 90%
CL. The red solid lines are contours of Higgs mass fine-tuning assuming Λ = 30 TeV, µ = −200 GeV and tanβ = 10. We have
evaluated the tuning with Xt = X min

t , the smallest mixing allowed by the data at 2σ for a given pair of masses. The blue dashed
line is a contour of 10% fine-tuning associated with r t̃

G .

this leads to tree-level tuning that is much worse than the loop-level tuning from At . To get the Higgs coupling
within the allowed range of experiments, there could be a cancelation between contributions with opposite signs
from the diagonal masses and mass mixings between two stops. Thus one could also define a fine-tuning measure
associated with the Higgs coupling
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So far the precision level of Higgs coupling measurements is still low, thus the fine-tuning of Higgs couplings is not
very large in general. In Fig. 2, we plot the boundary corresponding to 10% fine-tuning in Higgs coupling, which
excludes the possibility that even one stop is below about 100 GeV. (This is, essentially, the same observation that
was made in the context of electroweak baryogenesis in Refs. [18, 19].) We also considered contributions from
light stops to electroweak precision observables, in particular, theρ parameter, but the constraints there are much
weaker compared to those from current Higgs coupling measurements.

From Fig. 2, we see that regions with both stops lighter than about 400 GeV is excluded by the Higgs coupling
measurements at 2σ (95.45 %) C.L. Along the diagonal line where both stops are degenerate in mass, the constraint
gets stronger and extends to 450 GeV. In general, although one could construct clever natural models where stops
with different decaying topologies could evade the current collider searches, the Higgs coupling measurements
provide a powerful indirect probe independent of the stop decays. One can also see that at 3σ level, 20% fine-
tuning of Higgs mass, meaning that loop-level contribution to the Higgs mass is about the same as the tree-level
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limit is instructive for understanding the constraints. In this limit, the only way to cancel the large correction is

to set Xt = mt̃2
. In that case, we can see from eq. 3 that the excluded region would be mt̃2

< 2mt . As we will

see, our exclusion plots have this feature: the curves (extrapolated to smaller stop masses) are “anchored” at the

points (0, 2mt ) and (2mt , 0) on the axes, and extend away from these points along the diagonal. An alternative

argument reaches parameter space farther from the diagonal: for some choices of stop masses,

��X min

t

�� is not larger
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��X max

t

��, but the degree of cancelation required in eq. 4 to fit the data is so large that the point requires a high

amount of fine-tuning to fit the data. At present the region excluded by this tuning argument is small, but it will

become more important with future precise measurements. In Sec. 3, we will follow this basic idea and present the

constraints from Higgs coupling measurements in the stop mass plane in three different cases.
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for R-symmetric models. These have received a great deal of recent attention because Dirac gluinos ameliorate

the “second-order naturalness problem” of the gluino mass lifting the stop mass through RGEs [35–38] (though

see [4, 39] for a less sanguine take). In such models, the experimental constraint from Higgs data on stop masses

will be much stronger, because we no longer have the freedom to cancel a positive contribution against a negative

one from mixing. We will illustrate this stronger constraint on R-symmetric models below.

2.1 Global Fit of Higgs Couplings

The main tool we employ to extract constraints on natural SUSY is a global fit of Higgs data. Right now there are

five major final states in Higgs searches: h → γγ, h → ZZ ∗ → 4�, h →W W ∗, h → bb̄ , h → ττ̄. In each channel, the
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r 2

f�
j r 2

j Br(h→ j j )

�
, (6)

where the first summation is over all Higgs production modes denoted by i ’s while the second is over all Higgs

decay channels denoted by j ’s. ξi stands for the fraction of the signal events contributed by a specific production

channel i and identifies the appropriate weight of each coupling in a particular channels’ production rescaling.

Then to assess the compatibility of a point in the parameter space with the Higgs data, we construct a χ2 function
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(8)

where µob s
f is the central value of the observed data in channel f and σ f denotes the associated 1σ error bar. The

data we will use in our work is listed in Appendix B.

3 Constraints on Natural Stops

In this section we follow the procedure in Sec. 2 and explore the implications of Higgs fit results for natural stops.

We consider three cases with increasing number of parameters that parametrize the modifications of Higgs cou-

plings.
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Figure 2: Assuming no other contributions to Higgs digluon coupling rG other than stops’, region of natural stop that has been
ruled out by Higgs coupling measurements. The three shaded purple regions, from darkest to lightest, are excluded at 3σ
(99.73%) level; 2σ (95.45%) level; and 1σ (68.27%) level. The dashed purple line is the boundary of the region excluded at 90%
CL. The red solid lines are contours of Higgs mass fine-tuning assuming Λ = 30 TeV, µ = −200 GeV and tanβ = 10. We have
evaluated the tuning with Xt = X min

t , the smallest mixing allowed by the data at 2σ for a given pair of masses. The blue dashed
line is a contour of 10% fine-tuning associated with r t̃

G .

this leads to tree-level tuning that is much worse than the loop-level tuning from At . To get the Higgs coupling
within the allowed range of experiments, there could be a cancelation between contributions with opposite signs
from the diagonal masses and mass mixings between two stops. Thus one could also define a fine-tuning measure
associated with the Higgs coupling
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�2�����
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, (10)

with the parameter set denoted by p = (m 2
Q3

, m 2
U3

, Xt ). In the limit X 2
t ≈m 2

t̃1
+m 2

t̃2
where the coupling correction

vanishes, this scales with the amount of tuning in the sense that
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G

�
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∼
�����

X 2
t

m 2
t̃1
+m 2

t̃2
−X 2

t

����� . (11)

So far the precision level of Higgs coupling measurements is still low, thus the fine-tuning of Higgs couplings is not
very large in general. In Fig. 2, we plot the boundary corresponding to 10% fine-tuning in Higgs coupling, which
excludes the possibility that even one stop is below about 100 GeV. (This is, essentially, the same observation that
was made in the context of electroweak baryogenesis in Refs. [18, 19].) We also considered contributions from
light stops to electroweak precision observables, in particular, theρ parameter, but the constraints there are much
weaker compared to those from current Higgs coupling measurements.

From Fig. 2, we see that regions with both stops lighter than about 400 GeV is excluded by the Higgs coupling
measurements at 2σ (95.45 %) C.L. Along the diagonal line where both stops are degenerate in mass, the constraint
gets stronger and extends to 450 GeV. In general, although one could construct clever natural models where stops
with different decaying topologies could evade the current collider searches, the Higgs coupling measurements
provide a powerful indirect probe independent of the stop decays. One can also see that at 3σ level, 20% fine-
tuning of Higgs mass, meaning that loop-level contribution to the Higgs mass is about the same as the tree-level
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Higgs mass, is inconsistent with the Higgs coupling measurements. A 10% fine-tuning is still compatible with the
data at 90% confidence level, although a substantial portion of the parameter space with less than 10% tuning is
already ruled out.

3.2 Case 2: Higgs Mixing Effect at Large tanβ

Now we consider a slightly more complicated case with two parameters parametrizing the new physics contribu-
tions to Higgs couplings. In the scenario, besides the stops’ contribution to Higgs digluon (and correlated dipho-
ton) coupling, the Higgs mixing effects could be parametrized by a single parameter rb , the ratio of bottom Yukawa
coupling in the new scenario vs. the SM one. This is the case when tanβ is large, i.e., tanβ � 3. To see this, one
recalls that in 2HDM at tree level, rb = rτ, and

rb =
v c

hbb̄

mb

=− sinα
cosβ

, rt =
v cht t̄

mt

=
cosα
sinβ

, rV =
v chV V

2m
2
V

= sin
�
β −α� , (12)

implying the inequalities

r
2
b
≤ tan2β +1, r

2
t
≤ 1

tan2β
+1, r

2
V
≤ 1. (13)

So in general there are two independent parameters to describe rb , rt and rV . We choose these parameters to be
tanβ and rb . With this choice we write

rt =

�
1− r

2
b
−1

tan2β
, rV =

tanβ
1+ tan2β

�
rb

tanβ
+
�

1+ tan2β − r
2
b

�
, (14)

valid for all tanβ . For large tanβ , rt ≈ rV ≈ 1, thus effectively we are left with only one parameter rb .
In the left panel of Figure 3, we plot the boundaries of the allowed region at 1σ, 2σ, 3σ C.L. in the (r t̃

G
, rb − 1)

plane from the global fit of the Higgs data. One could see that if the bottom Yukawa coupling is enhanced, the
allowed r

t̃

G
also increases.

We also perform a profile likelihood fit to map out the allowed region in the plane of the stops’ physical masses.
This is depicted in the right panel of Fig. 3. One could see from the plot that the excluded regions shrink a bit
compared to the case with only one parameter. Yet still region with two light stops below 350 GeV is excluded by
the Higgs data at 2σ level.

Now we want to estimate the size of the deviation in rb in a concrete model. As discussed in [12], in the simplest
non-decoupling D-term models (e.g. [43, 44]) without a hard PQ-symmetry breaking source,

rb ≈
�

1− m
2
h

m
2
H

�−2

1−

δt̃

m
2
h

m
2
H


≈
�

1− m
2
h

m
2
H

�−2

,

≈ 1+0.22
�

400 GeV
mH

�2
(15)

where mH is the heavy CP-even Higgs mass. δt̃

m
2
h

is the stop loop contribution to m
2
h

and

�
1−

δt̃

m
2
h

m
2
H

�
will only

introduce a correction � 5% for mH � 400 GeV. Thus it is a good approximation that in these models, rb is only
determined by mH . We replot the fit in the (r t̃

G
, mH ) plane in the left panel of Fig. 4. We also plot contours of mH

that minimizes local χ2 in the stop mass plane in the right panel of Fig. 4. From the figure, one could see that to
allow a larger positive deviation in r

t̃

G
from two light stops, the heavy Higgs has to be light and within the reach of

direct searches (or indirect constraints, of which there are many [45]). More specifically, if the experimental heavy
Higgs mass bound is pushed to be 500 GeV or above, the enhancement in the bottom Yukawa is not sufficient to
compensate a possible increase in the Higgs digluon coupling. Effectively, the two parameter fit will be reduced to
one parameter fit with a stronger exclusion on the stop masses in Sec. 3.1.
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Figure 3: Left: global fit in the (r t̃
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, rb − 1) plane. × denotes the best fit point. The dotted, dashed, and solid purple contours

denote the boundaries of the allowed region at 1σ, 2σ, 3σ C.L. Right panel: assuming no other contributions to Higgs digluon

coupling rG other than stops’, region of natural stop that has been ruled out by Higgs coupling measurements with varying rb .

The three shaded purple regions, from darkest to lightest, are excluded at 3σ (99.73%) level; 2σ (95.45%) level; and 1σ (68.27%)
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ruled out by Higgs coupling measurements with varying rb , tanβ and r χ̃γ . The three shaded purple regions, from darkest to
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the text.

the constraints is only achieved with a positive rb − 1 and consequently a negative rt − 1. However, in the models

such as DiracNMSSM, the bottom Yukawa coupling is always reduced compared to its SM value. In that case, the

Higgs coupling constraints on the stop masses are the same as the strong ones depicted in Fig. 2! In the general

NMSSM with a light singlet mixing with the Higgs, the bottom Yukawa coupling might be enhanced if the heavy

Higgs is light [12]. In that case, the Higgs coupling constraints on the stop masses could be ameliorated.

3.4 Prospects from LHC Run 2 and Future Colliders

We have seen that measurements of Higgs properties have already begun to constrain a large part of the stop

parameter space for which fine-tuning is less than around a factor of ten. It is interesting to ask what the prospects

are for improving these constraints in the near future with LHC Run 2, as well as from possible future colliders like

the ILC or TLEP that would perform precision measurements of Higgs properties. We have used the Snowmass

Higgs working group estimates [51] to perform a simple estimate of this reach. We assume that the Higgs has

Standard Model couplings which are measured to be 1 with an error bar given by Table 1-20 of ref. [51], and examine

the one-parameter fit for r t̃
G given these constraints. For instance, the table lists a precision of 2 to 5% on the photon

coupling and 3 to 5% on the gluon coupling at the high luminosity LHC. We take the center of these ranges and

assume the couplings are measured to be 1±0.035 and 1±0.04 times their SM values, then examine what range of

stop parameter space would be excluded.

In Figure 7, we show the resulting projected reach of three experiments: the high luminosity LHC Run 2 assum-

ing 3 ab−1 of data; the ILC running at 250 and 500 GeV and collecting 250 and 500 fb−1 of data; and TLEP running

at 240 and 350 GeV and collecting 10 and 2.6 ab−1 of data. Notice that the HL-LHC projection is no better than the

current exclusion in Fig. 2. This indicates that we have been “lucky” so far, in the sense that current data prefers

a decreased Higgs coupling to gluons, and we have a stronger exclusion than expected. As precision increases at

the ILC or TLEP, the constraint from the

��X min

t

�� >
��X max

t

�� argument extends along the diagonal, ruling out nearly-
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Figure 7: Projected constraints on stops (from a one-parameter fit) from future experiments. The purple shaded region along
the diagonal has a minimum |Xt | needed to fit the data at 95% CL that is larger than

��X max
t

��. The blue shaded region requires a
tuning of Xt by more than a factor of 10 to fit the data. The dot-dashed red contours label Higgs mass fine-tuning.

degenerate stops up to high masses as precision increases. However, as discussed in Section 2, the exclusion region
is anchored at 350 GeV on both axes, and we see that the constraint does not extend far from the diagonal. As the
precision of the measurements increases, the exclusion based on tuning of Higgs couplings becomes progressively
more important, as indicated by the shaded blue regions in the figure. Furthermore, because the value of

��X min
t

�� for
given stop masses increases with the precision of the measurement and At enters the tuning measure, we can see
that the tuning curves move inward over time. TLEP would completely rule out regions of 10% tuning, as well as
a slice of parameter space with even higher fine-tuning. The ILC or TLEP would also directly constrain higgsinos,
and thus pin down tree-level fine-tuning as well as the loop effects we discuss.

4 Constraints on Folded Stops

In light of our failure to find supersymmetry so far, one could wonder if naturalness of electroweak symmetry
breaking might be enforced by a more subtle mechanism. One such theoretical proposal is Folded Supersymme-
try [7], in which top partners still cancel loop corrections to the Higgs mass, but these top partners have no Stan-
dard Model SU(3)c quantum numbers. However, these “F -stops” still have electroweak quantum numbers, which
are necessary to allow them to couple to the Higgs boson. They would contribute loop corrections to the h → γγ
amplitude but not to the h → g g amplitude. The Higgs also acquires a new decay to hidden gluons, h → g h g h ,
which may or may not appear as an invisible width experimentally depending on the lifetime of the hidden sector
glueballs, but in any case is very small and does not affect the fits. Because the W loop dominates over the top
loop in the SM h → γγ amplitude, the loop corrections from F -stops are more difficult to observe than those of
ordinary stops (which show up dominantly in the coupling h→ g g ). Still, we can ask how well the LHC and future
colliders can constrain F -stops, and whether measurements of the h→ γγ amplitude could be complementary to
studies of Higgs wavefunction renormalization as a probe of naturalness in this scenario [14].

The original model of Folded SUSY makes fairly specific predictions for the mass spectrum, but here we just
assume the existence of F -stops that have all of the couplings of ordinary stops except for the coupling to gluons.
The constraints arising from the F -stops’ modifications of the h → γγ decay width are plotted in Fig. 8, which
also shows projected TLEP reach. These constraints are significantly weaker than constraints on ordinary stops,
reinforcing the idea that “colorless supersymmetry” is a challenging scenario to constrain with the LHC. Even
a future collider like TLEP, which would set very powerful constraints on ordinary stops, would only constrain
folded stops to about the 20% tuning level. (Other colorless supersymmetry scenarios also typically involve new
electroweak states that might alter Higgs properties; see, for instance, refs. [52, 53].)
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